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The rat protein tyrosine phosphatase � (rPTP�) is a cysteine-dependent

phosphatase which hydrolyzes phosphoester bonds in proteins and other

molecules. rPTP� and its human homologue DEP-1 are involved in neoplastic

transformations. Thus, expression of the protein is reduced in all oncogene-

transformed thyroid cell lines and is absent in highly malignant thyroid cells.

Moreover, consistent with the suggested tumour suppression role of PTP�,
inhibition of the tumorigenic process occurs after its exogenous reconstitution,

suggesting that PTP� might be important for gene therapy of cancers. In this

study, the catalytic domain of rPTP� was produced in Escherichia coli in soluble

form and purified to homogeneity. Crystals were obtained by the hanging-drop

vapour-diffusion method. Diffraction data were collected to 1.87 Å resolution.

The crystal belongs to space group P212121, with unit-cell parameters a = 46.46,

b = 63.07, c = 111.64 Å, and contains one molecule per asymmetric unit.

1. Introduction

The dephosphorylation of tyrosyl residues by protein tyrosine

phosphatases plays a major role in controlling cell activities such as

embryogenesis, proliferation, differentiation, fertilization and

neoplastic transformation in vivo (Chagnon et al., 2004; den Hertog,

1999; Mustelin et al., 2002). The PTPs represent a diverse family of

enzymes that exist in both soluble cytosolic and receptor-like tyrosine

phosphatase (RPTP) forms. In humans, the classical tyrosine-specific

PTPs are encoded by 38 genes. Generally, the RPTPs contain one or

two conserved intracellular catalytic domains of approximately 240

amino acids with a conserved motif [(I/V)HCXAGXXR(S/T)G], a

single transmembrane domain and a highly variable external

segment. These cysteine-dependent phosphatases utilize the con-

served C(X)5R sequence motif to hydrolyze phosphoester bonds in

proteins and non-protein substrates (Alonso et al., 2004; Kolmodin &

Åqvist, 2001). The tertiary structure of the catalytic domains of all

crystallized RPTPs revealed an architecture comprised of a globular

fold that consists of an eight-stranded twisted �-sheet flanked by four

�-helices on one side and another on the opposite side (Jia et al.,

1995; Stuckey et al., 1994; Barford et al., 1998). The PTP-signature

motif is conservatively located at the bottom of the catalytic site cleft.

rPTP� is a ubiquitous gene that is highly homologous to human

DEP-1, also known as RPTP�, PTPRJ and CD148, as well as mouse

protein phosphatase �, Ptprj (Zhang et al., 1997; Honda et al., 1994;

Ostman et al., 1994; Ruivenkamp et al., 2002). The protein structure of

PTP� contains only one intracellular phosphatase domain, a single

transmembrane domain and eight fibronectin type III-like repeats in

the extracellular region (Krueger et al., 1990; Fischer et al., 1991;

Saito, 1993). Similar to thyroid-specific genes, rPTP� expression is

induced by TSH and is positively regulated by thyrotropin through

the protein kinase A pathway and negatively regulated by protein

kinase C activation (Martelli et al., 1998). Further evidence has

demonstrated the involvement of rPTP� and human DEP-1 in

neoplastic transformations of rat and human cells, respectively. A

reduction in expression of the protein is observed in all oncogene-

transformed thyroid cell lines and expression is absent in highly

malignant thyroid cells (Okazaki & Sagato, 1995). Moreover, the
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malignant phenotype can be reverted when PTP� gene expression is

re-established. The mechanism involved in this process includes

increasing levels of the cell-cycle inhibitor p27kip1 protein and

dephosphorylation of PLC�1, a substrate of DEP-1/HPTP�
(Trapasso et al., 2000). Recently, it has been shown that the PTP�
protein is capable of binding to c-Src in living cells. The dephos-

phorylation of the negative regulatory tyrosine (Tyr529 of the c-Src

family protein tyrosine kinases) increases c-Src tyrosine kinase

activity in malignant rat thyroid cells stably transfected with rPTP�
(Ardini et al., 2000). Additionally, studies have also implicated the

mouse homologue of rPTP�, Ptprj, in susceptibility to mouse colon

cancer, reinforcing the idea that restoration of PTP� function could

be a useful tool for gene therapy of human cancers (Ruivenkamp et

al., 2002).

In order to better understand the molecular mechanism of the

catalytic activity and substrate specificity of rPTP�, we have

expressed the catalytic domain (CD) of rPTP� in Escherichia coli,

purified it to homogeneity and crystallized it. Here, we describe the

crystallization and preliminary X-ray crystallographic analysis of

rPTP�CD.

2. Materials and methods

2.1. Expression and purification of recombinant rPTPg phosphatase

domain

BL21 (DE3) cells harbouring the plasmid containing the rPTP�
intracellular domain insert were grown at 303 K in 2�YT media plus

kanamicin with shaking until the absorbance at 600 nm reached

0.6–0.8. At this point, 0.5 mM isopropyl �-d-thiogalactopyranoside

(IPTG) was added to induce rPTP� expression and cells were incu-

bated for 4 h. The induced bacteria were harvested by centrifugation

at 6000g in a Sorvall RC-5C Plus centrifuge at 277 K for 20 min. The

bacterial pellets from 2.5 l culture were resuspended in 100 ml lysis

buffer (50 mM sodium phosphate buffer pH 7.8, 100 mM NaCl, 10%

glycerol, 10 mM imidazole, 2 mM �-mercaptoethanol) containing

1 mM PMSF and 0.5 mg ml�1 lysozyme (Sigma). The suspension was

incubated on ice for 30 min to lyse cells. The lysate was further

disrupted by sonication on ice with a 550 Sonic Dismembrator (Fisher

Scientific) to reduce the viscosity. Centrifugation was performed at

14 000g for 1 h and the clear supernatant obtained constituted the

crude protein preparation. The supernatant from the above step was

mixed with 20 ml Talon Superflow resin (Clontech) pre-equilibrated

with equilibration buffer (50 mM sodium phosphate buffer pH 7.8,

300 mM NaCl, 10% glycerol, 10 mM imidazole, 2 mM �-mercapto-

ethanol) and left rotating at 277 K for 1 h. The mixture of resin and

supernatant was poured into a c16/10 glass column (Amersham

Biosciences) connected to a HPLC ÄKTA purifier (Amersham

Biosciences) and the tightly bound proteins were eluted with elution

buffer (50 mM sodium phosphate buffer pH 7.8, 50 mM NaCl, 10%

glycerol, 300 mM imidazole, 2 mM �-mercaptoethanol). The protein

was further purified to >96% by size-exclusion chromatography on a

Superdex 200HL 26/60 column (Amersham Biosciences) using

HEPES buffer (20 mM HEPES pH 7.8, 200 mM NaCl, 5% glycerol,

1 mM DTT) as eluent. All purification procedures were carried out at

277 K. The purified protein fractions were visualized on 15% SDS–

PAGE. Soluble His6-rPTP� (molecular weight 43 kDa) was concen-

trated to 1 mg ml�1 and incubated, according to the manufacturer’s

recommendation, with 0.5 U ml�1 bovine thrombin protease for

1–18 h at 291 K followed by dialysis against HEPES buffer. The

thrombin-cleaved rPTP� was then frozen in liquid nitrogen and

stored at 193 K (Santos et al., 2005).

2.2. Crystallization

Crystallization conditions were screened by the sparse-matrix

method with hanging-drop vapour diffusion using Hampton Crystal

Screen 1 and 2 and Nextal Suites. Suitable crystals appeared using

Nextal PEGs Suite condition No. 35 (20% PEG 10 000, 0.1 M MES

pH 6.5) after 30 d (Fig. 1).

2.3. Data collection and processing

A single crystal was harvested in a nylon loop and transferred to a

cryoprotectant solution containing 20% PEG 10 000, 0.1 M MES pH

6.5 and 15%(v/v) ethylene glycol for one minute. The crystal was then

flash-cooled to 100 K in a nitrogen stream for data collection. Data

collection was carried out at the MX-1 beamline of the Brazilian

National Synchrotron Light Laboratory (LNLS, Campinas, Brazil;

Polikarpov, Oliva et al., 1997; Polikarpov et al., 1998) using synchro-

tron radiation of wavelength 1.42 Å to optimize both the diffraction
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Figure 1
Crystal of rPTP�CD. Typical dimensions are approximately 0.2 � 0.4 � 0.2 mm.

Figure 2
Diffraction pattern of the rPTP�CD crystal collected on the MX-1 beamline at
LNLS. The maximum resolution at the edge of the image is 1.87 Å.



efficiency of the crystal and the synchrotron-radiation flux of the

LNLS storage ring (Polikarpov, Teplyakov et al., 1997; Teplyakov et

al., 1998). 100 images were recorded with an oscillation of 1� per

image on a MAR CCD detector (Fig. 2). The data set was integrated

and scaled using MOSFLM (Leslie, 1992) and SCALA. Data-

collection statistics are given in Table 1.

3. Results and discussion

Initial screening of crystallization conditions resulted in a crystal

appropriate for data collection, which diffracted to 1.9 Å resolution

at a synchrotron beamline. Initial analysis of the solvent content by

determining the Matthews coefficient (Matthews, 1968) suggested

that the asymmetrical unit could accommodate one molecule with

46% solvent content. Molecular replacement using MOLREP (Vagin

& Teplyakov, 1997) and chain A of the crystal structure of the cata-

lytic domain of human tyrosine-protein phosphatase � (PDB code

2ahs) as a search model resulted in a clear solution with a single

molecule in the asymmetric unit. The top solution after rotation

function had a value of 10.64�, in contrast to 4.36� for the second

solution. The best solution after translation function had a score of

0.427 and an R factor of 0.569. Simulated annealing performed with

CNS (Brünger et al., 1998) using this solution and following a slow-

cooling protocol led to a structure with an R factor of 0.361 and

Rfree = 0.396. Structural refinement is in progress.

SCALA and MOLREP are programs from the CCP4 suite

(Collaborative Computational Project, Number 4, 1994).
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Table 1
X-ray data-collection statistics.

Values in parentheses are for the highest resolution shell (1.97–1.87 Å).

Wavelength (Å) 1.42
Resolution range (Å) 35.7–1.87
Space group P212121

Unit-cell parameters (Å, �) a = 46.46, b = 63.07, c = 111.64
Completeness (%) 99.4 (99.4)
Redundancy 3.6 (3.8)
Rmerge† (%) 6.0 (19.3)
Average I/�(I) 7.5 (3.7)
Total reflections 242862
Unique reflections 27816

† Rmerge =
P
jIi � hIij=

P
I, where Ii is the intensity of the ith observation and hIi is the

mean intensity of the reflections.


